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Impedances of azimuthally symmetric irises and cavities
with semielliptical profile in a beam pipe

Robert L. Gluckstern and Sergey S. Kurenhoy
Physics Department, University of Maryland, College Park, Maryland 20742
(Received 23 September 1996

The beam coupling impedances of small axisymmetric obstacles having a semielliptical cross section along
the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is
large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the
cavities with such a shape, which allows simple estimates of their broadband impedances.
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PACS numbeps): 41.75-i, 41.20—q

I. INTRODUCTION and using Maxwell's equations to writé in terms of the
fields E andH, we write the contribution of the obstacle to

High currents in modern accelerators and colliders sethe impedance as
verely restrict the allowed coupling impedance of the ma-
chine. For this reason, it is important to know the impedance
contributions even from small discontinuities of the vacuum
chamber.

In the preceding papéf], Kurennoy has analytically cal- where the surface integral is only over the surface of the
culated the low-frequency coupling impedance of small ob-obstacle. Using
stacles protruding into a beam pipe. In this paper we present
an alternative derivation for an azimuthally symmetric
semielliptical object protruding into a beam pipe, which con-
firms the dependence on the depth, but not on the width, of
the protrusion. We also study the more difficult—from the and
analytical point of view—case of an axisymmetric semiellip-
tical protrusionoutsidethe beam pipdcavity), and present n,dS,=2sr[ndz—zdr], (2.5
variational results for different elliptical eccentricities.

||0|22u(k):j dSzan;fXHz, (23)
S;#S;

*

. Zolo .
E1r=ﬁexp(1kz) (2.4

with r andz being unit vectors, we have
II. GENERAL ANALYSIS
ZH(k)

Zo

1 :
Consider a beam pipe of radif;,. and an azimuthally =— I—f drH2¢el"Z. (2.6
symmetric obstacle whose dimensions are small compared 0
with both Ry, and A, the rf wavelength. We start with the

Figure 1 shows the geometry for an obstacle protrudin
definition of the longitudinal impedance £3] '9u W g y profruding

into and outside of the beam pipe.

1
Z”(k)=—2f dvE-J*, (2.9 r=ry e
| 1 :
| O| z=—2 zl=0 z=Z m
N : T \ooa) H
where the current in the frequency domain for an ultrarela- "_Rﬁi?_‘fw ; rfﬂ _ \\_a/
tivistic point charge is =h Vevg | P \u=u0
. Y Y
J2(X,Y,Z;K) =18(x) 6(y)exp( — jk2), 2.2 ;
r= Rpipe-Y /r: Rpipe—Y
with k= w/c=2mx/\, and with the implied time dependence ! .
of all quantities being expft). We then identify two con-
figurations: the subscript 1 denotes the pipe without the _ =0
obstacle and the subscript 2 denotes the pipe with the ob- "\ | N L
stacle. By forming the combination A4 €

(a) {b)
—J dv(E,- J* +E* . J)

FIG. 1. The beam pipe with an interide) and exterior(b)
*Present address: AOT-1, LANL, Los Alamos, NM 87545, obstacle. One assumash<Y,Z<\,Rpipe.
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A more explicit form for Eq.(2.6) is

Z”(k) 1 M1 .
LAy jkz(r)
Zs IO[L drHy,(r,za(r))e

pipe

+f plpdrH2¢(r zy(r))elk@n | (2.7
M

We now convert the terms in square brackets in d7)
to a double integral for the obstacle in Figajt
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and find
b e Jes 91047
=— drd . (219
Zo ZWRplpe bglrlger

Ill. SEMIELLIPTICAL INTERIOR OBSTACLE—IRIS

We now proceed to calculate E@.15 explicitly for the
geometry of Fig. {a). We change from the variabteto the
variable

y= Rpipe_ r, (3.1

Rpipe [(Za(r) 4 . Rpi .
[]:J plpeJ al dZ_(H2¢eJkZ)+J plpedr(H2¢eJkZ)
o J-z 9z r

Ry z dJ .
+J p"’edrf dz— (Hpyei?%)
rq zp (1) Jz

f e dr(Hy,e*?)
r

z=-Z

with |y|<X\, |y|<R
defined by

pipe; and we use elliptical coordinatgg]

y=c coshu cow, z=c sinhu simw,

(2.9

2=z a=c sintuy, b=c coshuy, c?=b%*-a?% (3.2
HereZ is a distance large compared with the dimensions of . o _
the obstacle, but small compared withand R, S0 that ~ The metric(Jacobiahis defined by

H,,exp(k2) takes on its value in a pipe without an obstacle

atz=*Z, namely, dzdy=c?D(u,v)dudv, (3.3
H2¢(iZ):|OeXF(:JkZ) (29) Where
This causes the second and fourth terms on the right side of D(u,v)=cosRu sirfv +sintfu co 3.4

Eq. (2.8) to cancel. We also add the vanishing term

and the Laplacian operator can be written as
f drf dz—(HZd,el"Z) (2.10
plpe &2 52 1 52 52
and finally obtain a_xz+ WZ ¢?D(u,v) (W _v2 @9
ZH(k Jolld drdz (H2¢ejk2) (2.11) The. sqlution to I._aplace’s e'quation for the eIectro.static po-
border tential in the regioru=ug, with ¥ (uy,v)=0, and with the

asymptotic fieldg,, is

where the area of integration is within the solid border in

Fig. 1(a). Parallel arguments lead to the same result for the
obstacle in Fig. (b).

We now use Maxwell's equations to rewrite £8.11) as

¥ (u,v)=cEycov[coshu—eocoshug], (3.6

where
Zu(k) ff _
- drdz(E,—ZyH 4)el*?, AL 4 9 B
Z, Solid (B~ ZoH,) Er=—— =% =Eo— cEOeUOCosmow(cosve uy,

(2.12 37

where we have dropped the subscript 2. For low frequenc

we set expkz)=1 and obtain Y—|ere we choose cosin the second term to preserve the

symmetry around=0 (z=0), and to satisfy the boundary
condition for allv at u=uqy and forv= = /2 with u=u.

Z)(k)
H =— —f folld drdz(E,—ZoH,). (2.13  Also we have
Zo border
Clearly our derivation has resulted in a separation into aterm 9 _ 4 9 v 0
involving the electric polarizability and a term involving the  dy ﬂy u  dy dv
magnetic susceptibilityin the azimuthal directionas in pre- 1
vious work[3—6]. Since the _obstaclt_as_ are azimuthally sym- _ sinhu cosv i—cosm sirw i . (39
metric, we can replacg&yH, in the vicinity of the obstacle cD(u,v) Ju dv

by
Applying this to Eq.(3.7) for E, — Eq, we find from Eq.(3.6)

ZoH 4y =Eq=Zglo/(27Rpipe) (2.149  that
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Z”(k) —jkC2 IV. SEMIELLIPTICAL EXTERIOR OBSTACLE—CAVITY
= ———e"ocoshu j f du .
Zg 27 Ryipe 0 dv A. Analytical approach

X [cofve YUsinhu— sirfvecoshu] We now turn to the exterior semielliptical obstacle in Fig.
1(b). Here we need to choose appropriate potential forms for

]kc e”0coshJO U<u,, and foru=ug,, and match them at=u,.

solig d We again start with Eq(2.15 and work with the com-
P'Pe border . .

plete set of solutions of the Laplace equation, namely,

X[e 2“—cosd], (3.9  cosw exp(=nu) and simv exp(xnu). For u=u, (and

b>a), with the asymptotic field&,, we choose
where we have used E(R.14). "
We now letZ—o~ and cut off the integration ovey W (U,v)=Eqy—CcE, S ancoswe ™ 4.1
where =
in order to satisfy the even symmetry about0 (z=0) and
3> 1 W (u,* 7/2)=0 for u=u,. If we write

(3.10

Y
y=c coshu,cov=Y, or umaX:COSh_lCCO

\I,(Uo,l)):CEof(U), (42)

This leads to wheref(v) is, as yet, an unknown function, we can solve for

a, in terms off(v) to obtain

Zi(k kc2elocoshy (/2 Umax
1o _ | OJ va du[e 2“—cow ]

Z 47R . 2
° Pipe 2T an=— ;e“”ofn+euocosh105n1, 4.3
jkc?elocoshup[m ml2
=————| ~e - dvcos2 where
477Rpipe —7l2
2V /2
_ anf dvcoswi(v). (4.9
X ( Inc con Uo) }, (3.1 — 72
For u=sug, we write
or
ZH(k) jkc?cosituy  jkb? (312 Y(u,v)= 21 Bncoswcosimu (4.5
. m=
Zy 4Rpipe 4Rp,pe

for a potential which is well behaved within the ellipse. Rec-
where the last integral in Eq3.11) was done by parts for ognizing in this case thd{(v) =0 for 7/2<|v| <, we solve

Y>c. for By, in terms off(v) to obtain
Fora>b we need to modify our elliptical coordinates so
that B fm 6
Pn=" coshmug’ '

y=c sinhu sinv, z=c coshu cow,
wheref,, is consistent with the definition in Eg4.4). Both
a=c coshyy, b=csintuy, c2=a?—b2% (3.13 odd and even values ofi must be included.
We now calculate the impedance as we did in the preced-
ing section, this time including the regions=u, |v|< /2

The matrix is unchanged, but now )
9 andus<uy, [v|<m. Foru=u, we find

i: 1 coshusinw k2 sinhucos k2 Zﬁ>)(k) ike?
+ . |
dy D(u,v) c  au c v > —="71R =ty dudvE na,
(3.14 0 T pipe et
This time one finds x[e~ " Yicogn+1)v
—e (M Ducogn—1)v]. 4.7
Zy(k) _ jkc?sintfug  jkb?
= (3.15 ; - . .
Zo 4Rpine 4Rp|pe ' Clearly, only the terms witm=1 survive, leading ulti-
mately to
that is, the result is unchanged from H.12), again de- Zﬁ>)(k) e
pending only on the depth of the elliptical protrusion into the ‘ _J a,e”"ocoshu. (4.9

pipe and not on its width, as also found by Kurentiay. VA 4Rpipe
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For u<u, we separate the two terms in E@.15. The
second is simply

Zj5' (k) jkab  jkc2coshugsintug

4.9
Zo 7T4Rpipe 4Rpipe ( )
The first is
Z/7 (k) jkc? -
2|
=— dud m
VA 47TRpipe us<ug vmzzl P
X[cosHm+ 1)ucogm—1)v
+cosiim—1)ucogm+1)v]. (4.10
Again, only the termm=1 survives, and is
Z)7 szﬁ . wid
=— coshugsinhug. .
ZO 4Rpipe 1 0 0

Using Eqgs.(4.3 and(4.6) we have for the impedance

b? fi
—+ab—(a+hb)?=e Y
2 T

Z)(k) _ jk
Zy 2Rpipe

. (412

In order to findf, we must obtain and solve the integral

equation which represents the match ®F/Jdu at u=u,,
|v|<m/2. Here

oV _ =
N =CEy| sintugcow + 2, na,e "ocosh
u=to+ no?ic:il
(4.13
and
o - _
— =CcEy >, mBysintmucosmw.  (4.14
Jdu u=uy- m=1

Equating Egs(4.13 and (4.14), and using Eqgs(4.3) and
(4.6), we find

(4.19

w2
J dv’f(v')K(v,v')=m copeo,
12

—y

where

K(v,v')= 2, (2+tanmug)ncosivcosiv’
=1
nodd
+ >, m tanhmuycosnvcosny.  (4.16)
m=2

even

We now multiply Eq.(4.15 by 71/72T,2dz)1‘(z)) to obtain
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2

w2
[J dvf(v)cos

— /2

2 2
f dvf(v)f dv’
—7l2 —7l2

2
f dvf(v)co
— /2

f(v")K(v,v")

relo

fie

= . (4.17

™

This is a variational form foff;, the only unknown param-
eter in Eq.(4.12 for the impedance. An accurate numerical
value forZ|(k)/Z, can be found by expandinf(v) into a
complete set in the intervdb|</2, then truncating and
solving the resulting matrix equations obtained by maximiz-
ing Eq.(4.17). We write

77') cov | 18

P
f(v)= in p=
(v) pz,lcpsm(p2 >
odd

truncated afpp=P and normalizef(v) so thatc,=1. This
leads to

P P P
Hut 22, coHpit 2 2 CpCqHpg

p=3 p=3 gq=3

odd odd odd

_ -1
f,e”vo

(4.19

where the symmetric matrid ,, is

m tanhmuy,
—p?) (M= %)’
(4.20

Maximizing Eq.(4.19 with respect to the coefficients,,
p=3,5,...,P, leads to

2+tanhpug

Hpg=Hgqp= P

16
St 2 2

even

Pq

-1
fie” v

P P

= Hll_z 2 Hlp(Hil)quql
p=3 q=3
odd odd

(4.21)

Here (H*l)pq is the inverse of the matrixl,q with p and
g=3,5,7 ...,P. This square matrix has the dimension

(P—1)/2 by (P—1)/2. (4.22
Note that
tankpug= (1 —wP)/(1+wP) (4.23
and
tanhmuy = (1—w™)/(1+w"), (4.24)
with
w=(b—a)/(b+a). (4.25
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The final result for the impedance is given in Bg.12),
using Eqs(4.20 and(4.21).

The analysis for an obstacle wid» b proceeds in a simi-

lar, but not identical pattern. The result is once again Eq.

(4.12), using Egs(4.20 and(4.21), with only one change in
Eq. (4.20:

tanhpuy— cothpug,

with tanhu, now beinga/b instead ofb/a. Thusw in Eq.
(4.29 is replaced by—w in Eq. (4.23, but the use of
cothpy, instead of tanpu, for odd p leaves the expression
for Hpq in terms ofa andb unchanged. The same is true for
the term taniy, in Eq. (4.24 sincem is even. So the final
expression in Eq(4.12 is unchanged provideH , in Egs.
(4.20 and(4.2)) is expressed in terms af andb.

B. Variational approach—numerical results

We proceed with a numerical investigation of the varia-

tional scheme described by Eqg.12—(4.21). Truncating
the sum in the denominator of Ed4.21) at different
N=(P-1)/2=1,2,3,..., we explore the scheme conver-
gence, and compare the results for the imped@ahde) with
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FIG. 2. FunctionF(x) versus ellipse aspect ratio=a/b. The
solid curve is an interpolation of numerical resultbick points.
The dashed lines show the asymptotic behavior E429 and
(4.30.

enlargement — rectangular or semielliptical — does not af-
fect the electric term as long @s<h, since the beam electric
field does not penetrate deeply into such a cavity, unlike the
magnetic one. Substituting=2a into the electric term, and
replacing the pillbox areahg by the semi-ellipse area
wabl2 leads to the asymptotic form in EG:.29.

those obtained by other methods. In doing so, it is conve- The opposite limitx>1, corresponds to a very shallow

nient to rewrite Eq(4.12 in the form

z(k)  jk mab_(a i
Z, 2mRype 2 \b) (426
where
N 2(1x+2+X) i
0= T2 =3’ 427
and
1 i n (1+x)2"—(1—x)2"
SX=g & (7= 147 107+ (1-x)2
(4.29

Here3 (x) denotes the sum in the denominator of E21)
which is to be truncated.

The advantage of the representatigh26) is that we
know the asymptotic behavior of(x) for two limiting
cases. For<1, i.e., whema<b, but still b<R,— a short
and deep enlargement — it has been demonstratgg] that

4
F(x)—>1—?x. (4.29

In this limit, the inductive impedance in E1.26) is mostly
of magnetic origin: the beam magnetic field fills the cavity

cavity, b<a. It has been shown for many particular shapes
of such cavities(see[8], and references thergirthat the
low-frequency impedance of a small shallow cavity of the
depthh and of an iris with the same cross section and having
the same depth, are both inductive, equal to each other, and
in the leading order are proportional hd. Since we already
know the answer for a semielliptical irisee Sec. Il we
expect that forx>1

F(X)—>;,

(4.30

to match the low-frequency impedance of the shallow iris,
given in Eq.(3.15.

The results of our numerical study are shown in Fig. 2,
where the functiorf (x) is plotted against the ellipse aspect
ratio x=a/b. The convergence of the variational scheme is
rather fast for all values aof; in fact, results obtained with
N=1 [i.e., when the matrix in the sul®(x) is truncated to
merely a single numbé¢rlnd those foN=8, when the ma-
trix has size & 8, differ by less than 0.5%. And, of course,
we can obtain the asymptotic valueofx) for largeN with
much better accuracy, well below 1%) simply by extrapo-
lating the results for different matrix sizes at fixedFigure
2 also shows very good agreement with the expected asymp-
totic behavior Eq(4.29 for smallx and Eq.(4.30 for large

volume without being substantially perturbed, and therefore”
the inductance is simply proportional to the area of the ob-
stacle cross section. A correction of the orderxefa/b to

this term comes from the electric contribution. For a deep
pillbox of depthh which is much larger than width, the
electric contribution was calculated 8] by means of con-
formal mapping. It results in the electric termg?/(21r),
which is small compared to the magnetic one, equalgdor
such a pillbox. Obviously, the shape of a short and deep

V. TRANSVERSE COUPLING IMPEDANCE
We start with a dipole drive current for the transverse
impedance in the forr9]

JA(%,y,Z;K) =1 8(y)exp( — jkZ)[ 8(X—X1) = 6(X+Xq)],
(5.9
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where we eventually proceed to the limi—0. It is  driving field component&,, andH,, at the wall. Dropping
straightforward to shoy9] that the transverse impedance in the subscript 2, extracting the factor ¢ofrom H,, and

the x direction can be written as integrating overg leads to
Z(k)=— —2—1 f dvE- J* (5.2 2 f dr(ZoH4e*). (5.6
* 4kX1||O|2 ’ . ZO 2|(Xl OZO pipe. 0é .
analogous to Eq2.1) for the longitudinal impedance. Using ~ We now write Eq.(5.6) as a double integral oveirdz as
Maxwell’'s equations as we did in Sec. Il, leads to we did in Sec. Il, obtaining
N Zyk)  —j E—Eo
Zy(k)= T dS;ny- E7 XHp, (5.3 Z— B3 SO|Id dz ! (5.7)
4'kX1|I $#S; 0 RDIPE border Eo

but we must now use the form &; (andH,) appropriate to whereE,, the maximum asymptotic field at the wall, is
the source current in Eq4.26). In fact, we now have for

E, andZyH, at the beam pipe wall 220|0 (5.9
O_ R2 N
274l pibe
By =2ZoH14= R2 = x;cospexp( - jkz), Comparison of Eq(5.8) with Eq. (2.15 shows that the
pipe (5.4 calculations for an exterior and an interior obstacle are ex-
E1p=ZoH1,=0. ' actly the same as they were for the longitudinal impedance.
In fact, the results for the transverse impedance can be ob-
As a result, we can write tained simply by multiplying the results for the longitudinal
impedance in Eqs(3.12, (3.19, (4.12, and (4.21) by
Zdk) _ 1 f dqscos(/)f dr(ZaH 69 2/KRZ .
ZO 2le OZOWRpipe 012¢ '
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