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Impedances of azimuthally symmetric irises and cavities
with semielliptical profile in a beam pipe

Robert L. Gluckstern and Sergey S. Kurennoy*
Physics Department, University of Maryland, College Park, Maryland 20742

~Received 23 September 1996!

The beam coupling impedances of small axisymmetric obstacles having a semielliptical cross section along
the beam in the vacuum chamber of an accelerator are calculated at frequencies for which the wavelength is
large compared to a typical size of the obstacle. Analytical results are obtained for both the irises and the
cavities with such a shape, which allows simple estimates of their broadband impedances.
@S1063-651X~97!01003-9#

PACS number~s!: 41.75.2i, 41.20.2q
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I. INTRODUCTION

High currents in modern accelerators and colliders
verely restrict the allowed coupling impedance of the m
chine. For this reason, it is important to know the impeda
contributions even from small discontinuities of the vacuu
chamber.

In the preceding paper@1#, Kurennoy has analytically cal
culated the low-frequency coupling impedance of small
stacles protruding into a beam pipe. In this paper we pre
an alternative derivation for an azimuthally symmet
semielliptical object protruding into a beam pipe, which co
firms the dependence on the depth, but not on the width
the protrusion. We also study the more difficult—from t
analytical point of view—case of an axisymmetric semiell
tical protrusionoutsidethe beam pipe~cavity!, and present
variational results for different elliptical eccentricities.

II. GENERAL ANALYSIS

Consider a beam pipe of radiusRpipe and an azimuthally
symmetric obstacle whose dimensions are small comp
with bothRpipe andl, the rf wavelength. We start with th
definition of the longitudinal impedance as@2#

Zi~k!5
1

uI 0u2
E dvE•J* , ~2.1!

where the current in the frequency domain for an ultrare
tivistic point charge is

Jz~x,y,z;k!5I 0d~x!d~y!exp~2 jkz!, ~2.2!

with k5v/c52p/l, and with the implied time dependenc
of all quantities being exp(jvt). We then identify two con-
figurations: the subscript 1 denotes the pipe without
obstacle and the subscript 2 denotes the pipe with the
stacle. By forming the combination

2E dv~E2•J*1E1* •J!
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and using Maxwell’s equations to writeJ in terms of the
fieldsE andH, we write the contribution of the obstacle to
the impedance as

uI 0u2Zu~k!5E
S2ÞS1

dS2n2•E1*3H2 , ~2.3!

where the surface integral is only over the surface of the
obstacle. Using

E1r* 5
Z0I 0*

2pr
exp~ jkz! ~2.4!

and

n2dS252pr @ n̂dz2 ẑdr#, ~2.5!

with r̂ and ẑ being unit vectors, we have

Zi~k!

Z0
52

1

I 0
E drH2fe

jkz. ~2.6!

Figure 1 shows the geometry for an obstacle protruding
into and outside of the beam pipe.

FIG. 1. The beam pipe with an interior~a! and exterior~b!
obstacle. One assumesa,b!Y,Z!l,Rpipe.
3533 © 1997 The American Physical Society
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A more explicit form for Eq.~2.6! is

Zi~k!

Z0
52

1

I 0
F E

Rpipe

r1
drH2f„r ,za~r !…ejkz~r !

1E
r1

Rpipe
drH2f„r ,zb~r !…ejkz~r !G . ~2.7!

We now convert the terms in square brackets in Eq.~2.7!
to a double integral for the obstacle in Fig. 1~a!:

@ #5E
r1

RpipeE
2Z

za~r !

dz
]

]z
~H2fe

jkz!1E
r1

Rpipe
dr~H2fe

jkz!U
z52Z

1E
r1

Rpipe
drE

zb~r !

Z

dz
]

]z
~H2fe

jzk!

2E
r1

Rpipe
dr~H2fe

jkz!U
z5Z

. ~2.8!

HereZ is a distance large compared with the dimensions
the obstacle, but small compared withl andRpipe, so that
H2fexp(jkz) takes on its value in a pipe without an obstac
at z56Z, namely,

H2f~6Z!5I 0exp~7 jkZ!. ~2.9!

This causes the second and fourth terms on the right sid
Eq. ~2.8! to cancel. We also add the vanishing term

E
Rpipe2Y

r1
drE

2Z

Z

dz
]

]z
~H2fe

jkz!, ~2.10!

and finally obtain

Zi~k!

Z0
5

1

I 0
E Esolid

border

drdz
]

]z
~H2fe

jkz!, ~2.11!

where the area of integration is within the solid border
Fig. 1~a!. Parallel arguments lead to the same result for
obstacle in Fig. 1~b!.

We now use Maxwell’s equations to rewrite Eq.~2.11! as

Zi~k!

Z0
52

jk

Z0I 0
E Esolid

border

drdz~Er2Z0Hf!ejkz,

~2.12!

where we have dropped the subscript 2. For low freque
we set exp(jkz)51 and obtain

Zi~k!

Z0
>2

jk

Z0I 0
E Esolid

border

drdz~Er2Z0Hf!. ~2.13!

Clearly our derivation has resulted in a separation into a t
involving the electric polarizability and a term involving th
magnetic susceptibility~in the azimuthal direction! as in pre-
vious work @3–6#. Since the obstacles are azimuthally sy
metric, we can replaceZ0Hf in the vicinity of the obstacle
by

Z0Hf5E05Z0I 0 /~2pRpipe! ~2.14!
f

of

e

y
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-

and find

Zi~k!

Z0
52

jk

2pRpipe
E Esolid

border

drdzSEr2E0

E0
D . ~2.15!

III. SEMIELLIPTICAL INTERIOR OBSTACLE—IRIS

We now proceed to calculate Eq.~2.15! explicitly for the
geometry of Fig. 1~a!. We change from the variabler to the
variable

y5Rpipe2r , ~3.1!

with uyu!l, uyu!Rpipe, and we use elliptical coordinates@7#
defined by

y5c coshu cosv, z5c sinhu sinv,

a5c sinhu0 , b5c coshu0 , c25b22a2. ~3.2!

The metric~Jacobian! is defined by

dzdy5c2D~u,v !dudv, ~3.3!

where

D~u,v !5cosh2u sin2v1sinh2u cos2v, ~3.4!

and the Laplacian operator can be written as

]2

]x2
1

]2

]y2
5

1

c2D~u,v ! S ]2

]u2
1

]2

]v2D . ~3.5!

The solution to Laplace’s equation for the electrostatic p
tential in the regionu>u0, with C(u0 ,v)50, and with the
asymptotic fieldE0, is

C~u,v !5cE0cosv@coshu2eu02ucoshu0#, ~3.6!

where

Er52
]C

]r
5

]C

]y
5E02cE0e

u0coshu0
]

]y
~cosve2u!.

~3.7!

Here we choose cosv in the second term to preserve th
symmetry aroundv50 (z50), and to satisfy the boundar
condition for all v at u5u0 and for v56p/2 with u>u0.
Also we have

]

]y
5

]u

]y

]

]u
1

]v
]y

]

]v

5
1

cD~u,v ! Fsinhu cosv
]

]u
2coshu sinv

]

]vG . ~3.8!

Applying this to Eq.~3.7! for Er2E0, we find from Eq.~3.6!
that
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Zi~k!

Z0
5

2 jkc2

2pRpipe
eu0coshu0E E dudv

3@cos2ve2usinhu2sin2ve2ucoshu#

5
jkc2eu0coshu0

2Rpipe
E Esolid

border

dudv

3@e22u2cos2v#, ~3.9!

where we have used Eq.~2.14!.
We now let Z→` and cut off the integration overv

where

y5c coshumaxcosv5Y, or umax5cosh21
Y

ccosv
@1.

~3.10!

This leads to

Zi~k!

Z0
5
jkc2eu0coshu0

4pRpipe
E

2p/2

p/2

dvE
u0

umax
du@e22u2cosv#

>
jkc2eu0coshu0

4pRpipe
Fp

2
e22u02E

2p/2

p/2

dvcos2v

3S ln 2Y

c cosv
2u0D G , ~3.11!

or

Zi~k!

Z0
5
jkc2cosh2u0

4Rpipe
5

jkb2

4Rpipe
, ~3.12!

where the last integral in Eq.~3.11! was done by parts fo
Y@c.

For a.b we need to modify our elliptical coordinates s
that

y5c sinhu sinv, z5c coshu cosv,

a5c coshu0 , b5c sinhu0 , c25a22b2. ~3.13!

The matrix is unchanged, but now

]

]y
5

1

D~u,v ! Fcoshusinvc

]

]u
1
sinhucosv

c

]

]vG .
~3.14!

This time one finds

Zi~k!

Z0
5
jkc2sinh2u0

4Rpipe
5

jkb2

4Rpipe
, ~3.15!

that is, the result is unchanged from Eq.~3.12!, again de-
pending only on the depth of the elliptical protrusion into t
pipe and not on its width, as also found by Kurennoy@1#.
IV. SEMIELLIPTICAL EXTERIOR OBSTACLE—CAVITY

A. Analytical approach

We now turn to the exterior semielliptical obstacle in Fi
1~b!. Here we need to choose appropriate potential forms
u<u0, and foru>u0, and match them atu5u0.

We again start with Eq.~2.15! and work with the com-
plete set of solutions of the Laplace equation, name
cosnv exp(6nu) and sinnv exp(6nu). For u>u0 ~and
b.a), with the asymptotic fieldE0, we choose

C~u,v !5E0y2cE0(
n51

`

ancosnve
2nu ~4.1!

in order to satisfy the even symmetry aboutv50 (z50) and
C(u,6p/2)50 for u>u0. If we write

C~u0 ,v !5cE0f ~v !, ~4.2!

wheref (v) is, as yet, an unknown function, we can solve f
an in terms of f (v) to obtain

an52
2

p
enu0f n1eu0coshu0dn1 , ~4.3!

where

f n[E
2p/2

p/2

dvcosnv f ~v !. ~4.4!

For u<u0, we write

C~u,v !5 (
m51

`

bncosnvcoshmu ~4.5!

for a potential which is well behaved within the ellipse. Re
ognizing in this case thatf (v)50 forp/2,uvu,p, we solve
for bm in terms of f (v) to obtain

bm5
f m

p coshmu0
, ~4.6!

where f m is consistent with the definition in Eq.~4.4!. Both
odd and even values ofm must be included.

We now calculate the impedance as we did in the prec
ing section, this time including the regionsu>u0, uvu<p/2
andu<u0, uvu<p. For u>u0 we find

Zi
~. !~k!

Z0
52

jkc2

4pRpipe
E Eu>u0

y,Y

dudv(
n51
odd

`

nan

3@e2~n21!ucos~n11!v

2e2~n11!ucos~n21!v#. ~4.7!

Clearly, only the terms withn51 survive, leading ulti-
mately to

Zi
~. !~k!

Z0
5

jkc2

4Rpipe
a1e

2u0coshu. ~4.8!
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For u<u0 we separate the two terms in Eq.~2.15!. The
second is simply

Zi ,2
~, !~k!

Z0
5

jkab

p4Rpipe
5
jkc2coshu0sinhu0

4Rpipe
. ~4.9!

The first is

Zi ,1
~, !~k!

Z0
52

jkc2

4pRpipe
E E

u<u0

dudv (
m51

`

mbm

3@cosh~m11!ucos~m21!v

1cosh~m21!ucos~m11!v#. ~4.10!

Again, only the termm51 survives, and is

Zi ,1
~, !~k!

Z0
52

jkc2

4Rpipe
b1coshu0sinhu0 . ~4.11!

Using Eqs.~4.3! and ~4.6! we have for the impedance

Zi~k!

Z0
5

jk

2Rpipe
Fb22 1ab2~a1b!2

f 1
p
e2u0G . ~4.12!

In order to findf 1, we must obtain and solve the integr
equation which represents the match of]C/]u at u5u0,
uvu<p/2. Here

]C

]u U
u5u01

5cE0F sinhu0cosv1 (
n51
odd

`

nane
2nu0coshvG

~4.13!

and

]C

]u U
u5u02

5cE0 (
m51

`

mbmsinhmu0cosmv. ~4.14!

Equating Eqs.~4.13! and ~4.14!, and using Eqs.~4.3! and
~4.6!, we find

E
2p/2

p/2

dv8 f ~v8!K~v,v8!5p cosveu0, ~4.15!

where

K~v,v8!5 (
n51
odd

`

~21tanhnu0!ncosnvcosuv8

1 (
m52
even

`

m tanhmu0cosmvcosmv. ~4.16!

We now multiply Eq.~4.15! by *2p/2
p/2 dv f (v) to obtain
F E
2p/2

p/2

dv f ~v !cosvG2
E

2p/2

p/2

dv f ~v !E
2p/2

p/2

dv8

f ~v8!K~v,v8!

5

E
2p/2

p/2

dv f ~v !cosv

peu0

5
f 1e

2u0

p
. ~4.17!

This is a variational form forf 1, the only unknown param-
eter in Eq.~4.12! for the impedance. An accurate numeric
value forZi(k)/Z0 can be found by expandingf (v) into a
complete set in the intervaluvu<p/2, then truncating and
solving the resulting matrix equations obtained by maxim
ing Eq. ~4.17!. We write

f ~v !5 (
p51
odd

P

cpsinS pp

2 D cospvp
, ~4.18!

truncated atp5P and normalizef (v) so thatc151. This
leads to

f 1e
2u0

p
5FH1112(

p53
odd

P

cpHp11 (
p53
odd

P

(
q53
odd

P

cpcqHpqG21

,

~4.19!

where the symmetric matrixHpq is

Hpq5Hqp5
21tanhpu0

P
dpq1

16

p2 (
m52
even

`
m tanhmu0

~m22p2!~m22q2!
.

~4.20!

Maximizing Eq. ~4.19! with respect to the coefficientscp ,
p53,5, . . . ,P, leads to

f 1e
2u0

p
5FH112 (

p53
odd

P

(
q53
odd

P

H1p~H
21!pqHq1G21

.

~4.21!

Here (H21)pq is the inverse of the matrixHpq with p and
q53,5,7, . . . ,P. This square matrix has the dimension

~P21!/2 by ~P21!/2. ~4.22!

Note that

tanhpu05~12wp!/~11wp! ~4.23!

and

tanhmu05~12wm!/~11wm!, ~4.24!

with

w5~b2a!/~b1a!. ~4.25!
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The final result for the impedance is given in Eq.~4.12!,
using Eqs.~4.20! and ~4.21!.

The analysis for an obstacle witha.b proceeds in a simi-
lar, but not identical pattern. The result is once again
~4.12!, using Eqs.~4.20! and~4.21!, with only one change in
Eq. ~4.20!:

tanhpu0→cothpu0 ,

with tanhu0 now beinga/b instead ofb/a. Thusw in Eq.
~4.25! is replaced by2w in Eq. ~4.23!, but the use of
cothpu0 instead of tanhpu0 for odd p leaves the expressio
for Hpq in terms ofa andb unchanged. The same is true f
the term tanhmu0 in Eq. ~4.24! sincem is even. So the fina
expression in Eq.~4.12! is unchanged providedHpq in Eqs.
~4.20! and ~4.21! is expressed in terms ofa andb.

B. Variational approach—numerical results

We proceed with a numerical investigation of the var
tional scheme described by Eqs.~4.12!–~4.21!. Truncating
the sum in the denominator of Eq.~4.21! at different
N5(P21)/251,2,3,. . . , we explore the scheme conve
gence, and compare the results for the impedance~4.12! with
those obtained by other methods. In doing so, it is con
nient to rewrite Eq.~4.12! in the form

Zi~k!

Z0
5

jk

2pRpipe

pab

2
FS abD , ~4.26!

where

F~x!5
1

x
122

2~1/x121x!

21x116s~x!/p22S~x!
, ~4.27!

and

s~x!5
1

8 (
n51

`
n

~n221/4!2
~11x!2n2~12x!2n

~11x!2n1~12x!2n
.

~4.28!

HereS(x) denotes the sum in the denominator of Eq.~4.21!
which is to be truncated.

The advantage of the representation~4.26! is that we
know the asymptotic behavior ofF(x) for two limiting
cases. Forx!1, i.e., whena!b, but still b!Rpipe— a short
and deep enlargement — it has been demonstrated in@8# that

F~x!→12
4

p2 x. ~4.29!

In this limit, the inductive impedance in Eq.~4.26! is mostly
of magnetic origin: the beam magnetic field fills the cav
volume without being substantially perturbed, and theref
the inductance is simply proportional to the area of the
stacle cross section. A correction of the order ofx5a/b to
this term comes from the electric contribution. For a de
pillbox of depthh which is much larger than widthg, the
electric contribution was calculated in@8# by means of con-
formal mapping. It results in the electric term2g2/(2p),
which is small compared to the magnetic one, equal tohg for
such a pillbox. Obviously, the shape of a short and d
.

-

-

e
-

p

p

enlargement — rectangular or semielliptical — does not
fect the electric term as long asg!h, since the beam electric
field does not penetrate deeply into such a cavity, unlike
magnetic one. Substitutingg52a into the electric term, and
replacing the pillbox areahg by the semi-ellipse area
pab/2 leads to the asymptotic form in Eq.~4.29!.

The opposite limit,x@1, corresponds to a very shallow
cavity, b!a. It has been shown for many particular shap
of such cavities~see @8#, and references therein! that the
low-frequency impedance of a small shallow cavity of t
depthh and of an iris with the same cross section and hav
the same depth, are both inductive, equal to each other,
in the leading order are proportional toh2. Since we already
know the answer for a semielliptical iris~see Sec. III! we
expect that forx@1

F~x!→
1

x
, ~4.30!

to match the low-frequency impedance of the shallow ir
given in Eq.~3.15!.

The results of our numerical study are shown in Fig.
where the functionF(x) is plotted against the ellipse aspe
ratio x5a/b. The convergence of the variational scheme
rather fast for all values ofx; in fact, results obtained with
N51 @i.e., when the matrix in the sumS(x) is truncated to
merely a single number# and those forN58, when the ma-
trix has size 838, differ by less than 0.5%. And, of course
we can obtain the asymptotic value ofF(x) for largeN with
much better accuracy, well below 1023, simply by extrapo-
lating the results for different matrix sizes at fixedx. Figure
2 also shows very good agreement with the expected asy
totic behavior Eq.~4.29! for smallx and Eq.~4.30! for large
x.

V. TRANSVERSE COUPLING IMPEDANCE

We start with a dipole drive current for the transver
impedance in the form@9#

Jz~x,y,z;k!5I 0d~y!exp~2 jkz!@d~x2x1!2d~x1x1!#,
~5.1!

FIG. 2. FunctionF(x) versus ellipse aspect ratiox5a/b. The
solid curve is an interpolation of numerical results~thick points!.
The dashed lines show the asymptotic behavior Eqs.~4.29! and
~4.30!.
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where we eventually proceed to the limitx1→0. It is
straightforward to show@9# that the transverse impedance
the x direction can be written as

Zx~k!52
1

4kx1
2uI 0u2

E dvE•J* , ~5.2!

analogous to Eq.~2.1! for the longitudinal impedance. Usin
Maxwell’s equations as we did in Sec. II, leads to

Zx~k!52
1

4kx1
2uI 0u2

E
S2ÞS1

dSzn2•E1*3H2 , ~5.3!

but we must now use the form ofE1 ~andH2) appropriate to
the source current in Eq.~4.26!. In fact, we now have for
E1 andZ0H1 at the beam pipe wall

E1r5Z0H1f5
2Z0I 0
pRpipe

2 x1cosfexp~2 jkz!,

~5.4!
E1f5Z0H1r50.

As a result, we can write

Zx~k!

Z0
>2

1

2kx1I 0Z0pRpipe
E dfcosfE dr~Z0H2fe

jkz!.

~5.5!

Once again we have written the impedance as an inte
along the surface of the obstacle, whereH2f arises from the
al

driving field componentsE1r andH1f at the wall. Dropping
the subscript 2, extracting the factor cosf from Hf , and
integrating overf leads to

Zx~k!

Z0
>2

1

2kx1I 0Z0Rpipe
E dr~Z0Hfe

jkz!. ~5.6!

We now write Eq.~5.6! as a double integral overdrdz as
we did in Sec. II, obtaining

Zx~k!

Z0
5

2 j

Rpipe
3 Esolid

border

drE dzSEr2E0

E0
D , ~5.7!

whereE0, the maximum asymptotic field at the wall, is

E05
2Z0I 0
pRpipe

2 x1 . ~5.8!

Comparison of Eq.~5.8! with Eq. ~2.15! shows that the
calculations for an exterior and an interior obstacle are
actly the same as they were for the longitudinal impedan
In fact, the results for the transverse impedance can be
tained simply by multiplying the results for the longitudin
impedance in Eqs.~3.12!, ~3.15!, ~4.12!, and ~4.21! by
2/kRpipe

2 .
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